Topological FDR for neuroimaging
نویسندگان
چکیده
منابع مشابه
Topological FDR for neuroimaging
In this technical note, we describe and validate a topological false discovery rate (FDR) procedure for statistical parametric mapping. This procedure is designed to deal with signal that is continuous and has, in principle, unbounded spatial support. We therefore infer on topological features of the signal, such as the existence of local maxima or peaks above some threshold. Using results from...
متن کاملFDR adjustments of Microarray Experiments (FDR-AME)
Purpose This R package adjusts p-values generated in multiple hypotheses testing of gene expression data obtained by a microarray experiment. The software applies multiple testing procedures that control the False Discovery Rate (FDR) criterion introduced by Benjamini and Hochberg (1995). It applies both theoretical-distribution-based and resampling-based multiple testing procedures, and presen...
متن کاملFalse discovery rate revisited: FDR and topological inference using Gaussian random fields
In this note, we revisit earlier work on false discovery rate (FDR) and evaluate it in relation to topological inference in statistical parametric mapping. We note that controlling the false discovery rate of voxels is not equivalent to controlling the false discovery rate of activations. This is a problem that is unique to inference on images, in which the underlying signal is continuous (i.e....
متن کاملFDR Control with adaptive procedures and FDR monotonicity
The steep rise in availability and usage of high-throughput technologies in biology brought with it a clear need for methods to control the False Discovery Rate (FDR) in multiple tests. Benjamini and Hochberg (BH) introduced in 1995 a simple procedure and proved that it provided a bound on the expected value, FDR ≤ q. Since then, many authors tried to improve the BH bound, with one approach bei...
متن کاملTwo simple sufficient conditions for FDR control
We show that the control of the false discovery rate (FDR) for a multiple testing procedure is implied by two coupled simple sufficient conditions. The first one, which we call “self-consistency condition”, concerns the algorithm itself, and the second, called “dependency control condition” is related to the dependency assumptions on the p-value family. Many standard multiple testing procedures...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: NeuroImage
سال: 2010
ISSN: 1053-8119
DOI: 10.1016/j.neuroimage.2009.10.090